Willkommen Welcome Bienvenue

Tunable ion flux density and its impact on AIN thin films deposited in a confocal DC Magnetron Sputtering System

XXIV. Erfahrungsaustausch Oberflächentechnologie mit Plasma- und Ionenstrahlprozessen -Mühlleithen / Vogtland, 07. - 09. März 2017

*Mathis Trant*¹, Maria Fischer¹, Kerstin Thorwarth¹, Sven Gauter², Hans Josef Hug¹, Jörg Patscheider¹

¹Empa, Laboratory for Nanoscale Materials Science, Switzerland ²Institut für Experimentelle und Angewandte Physik, University of Kiel, Kiel, Germany

Outline

Motivation & Introduction

- Results
 - Part A: Plasma Analytics

Part B: Thin Film Properties

Conclusion

Motivation

Plasma analytics

- Plasma control
- Control of thin film growth through plasma conditions

Ref: A. Anders, Thin Solid Films, Volume 518, Issue 15, 31 May 2010, Pages 4087-4090

Magnetic Configuration of Single Magnetron

Ref: Window, B., & Savvides, N. (1986). Journal of Vacuum Science & Technology A, 4(2), 196.

Empa Materials Science and Technology

Top View

Ref: CAPST, Sungkyunkwan University, Suwon, South Korea

Magnetic Configuration of Single Magnetron

- Plasma extended towards substrate
- Interaction of growing film with plasma

Top View

Ref: CAPST, Sungkyunkwan University, Suwon, South Korea

Ref: Window, B., & Savvides, N. (1986). Journal of Vacuum Science & Technology A, 4(2), 196.

07.03.2017

Confocal Dual Magnetron Sputtering

Confocal Dual Magnetron Sputtering

Confocal Dual Magnetron Sputtering

07.03.2017

8

Plasma Analytics Setup

In Situ Coil	
Ν	150
L	58 cm
R	8.8 – 12.2 cm
 B^{max} @ substrate	≈200 G

Plasma Analytics Setup

In Situ Coil		
Ν	150	
L	58 cm	
R	8.8 – 12.2 cm	
B ^{max} @ substrate	≈200 G	

Plasma Analytics

- 'Substrate Holder'
- Langmuir Probe
- Calorimetric Probe
- 'Thermocouple'

Confocal DCMS		
$\varphi = \varphi_{Ar}$	15 sccm (p \approx 5µbar)	
P _{1,2} (AI)	200 W (10W/cm ²)	
d _{target<->substrate}	12 cm	

Plasma Analytics I – Substrate Holder

- Enhancement of ion flux for both configurations
- Ion flux is the sum of ion flux from individual guns

Plasma Analytics II - Langmuir Probe

Closed Field

18 20 I_{coil} =26 A Ion Current [Am⁻²] x=3 🗙 16 15 10 × 14 5 12 0 Ion Current [Am⁻²] -50 0 50 l coil 10 I_{соі} =15 А 8 6 4 I_{coil} ≤ 5 A 2 0 不 5 0 2 3 position [cm] 12

Open Field

Plasma Analytics II - Langmuir Probe

Open Field

Closed Field

Local increase of ion flux density by more than one order of magnitude

Plasma Analytics III – Calorimetric Probe

Closed Field

Open Field

Plasma Analytics III – Calorimetric Probe

Closed Field

Local increase in energy flux density by more than one order of magnitude.

Almost identical spatial profiles to ion current density

Open Field

Plasma Analytics IV – Temperature

back


```
Open Field, I_{coil} = -24A
```

I _{coil} [A]	Temperature [°C] (open field; P _{1,2} (Al) = 200W)			
	T _{outer}	T _{middle}	T _{inner}	T _{back}
0	116	108	100	79
-24	259	171	145	115

Motivation Why Aluminum Nitride?

- **Hard** (around 20 GPa)
- Wide bandgap semiconductor (6.2 eV)
- **Optically Transparent** (400-800 nm)
- **Piezoelectric** (5.15 pm/V for d_{33})

AIN Thin Film Properties Setup

Reactive Confocal DC Magnetron Sputtering

Ar:N ₂	15:12
Pressure	5 µbar
Power	200 W (10W/cm ²)

Varied Parameters	· · · · · · · · · · · · · · · · · · ·	
		Varamotorc
	yan igu	

on to Neutral Ratio	1↔ 44
on Current Density	1.5 ↔ 70 A/m ²
Temperature	100 ↔ 500 °C

AIN Thin Film Properties

AIN Thin Film Properties

composition

- **Stochiometric films** ۲ Metal non-metal ratio not affected by ion bombardment
- **Oxygen** incorporation reduced for higher plasma densities

Explanation:

Higher reactivity of N₂ in plasma environment

20

No Ar implantation through increased ion bombardment (<0.07 at% ,RBS+ERDA)

> Low energy ion bombardment!

(almost) all samples show prefered (002)-orientation

Conclusions

- Variation of ion flux density with additional magnetic field in confocal DCMS.
 - j_{ion} tunable over more than one order of magnitude
 - Considerable influence on temperature
- Comparison of influence of Ion Bombardment and Temperature on AIN thin film growth
 - (002) orientation: 100 °C < T < 500 °C
 - $1 < j_{ion}/j_{neutral} < 30$
 - Stress: tensile \rightarrow compressive with increasing j_{ion}
 - Microstructure: columnar, porous \rightarrow dense with increasing j_{ion}

Outro

